
 
 

 

 

Abstract— Learning and interaction are viewed as two related 
but distinct topics in developmental robotics. Many studies 
focus solely on either building a robot that can acquire new 
knowledge and learn to perform new tasks, or designing smooth 
human-robot interactions with pre-acquired knowledge and 
skills. The present paper focuses on linking language learning 
with human-robot interaction, showing how better 
human-robot interaction can lead to better language learning 
by robot. Toward this goal, we developed a real-time 
human-robot interaction paradigm in which a robot learner 
acquired lexical knowledge from a human teacher through 
free-flowing interaction. With the same statistical learning 
mechanism in the robot’s system, we systematically 
manipulated the degree of activity in human-robot interaction 
in three experimental conditions: the robot learner was either 
highly active with lots of speaking and looking acts, or 
moderately active with a few acts, or passive without actions.  
Our results show that more talking and looking acts from the 
robot, including those immature behaviors such as saying 
non-sense words or looking at random targets, motivated 
human teachers to be more engaged in the interaction. In 
addition, more activities from the robot revealed its robot’s 
internal learning states in real time, which allowed human 
teachers to provide more useful and “on-demand” teaching 
signals to facilitate learning. Thus, compared with passive and 
batch-mode training, an active robot learner can create more 
and better training data through smooth and effective social 
interactions that consequentially lead to more successful 
language learning.  

I. INTRODUCTION 

Language is a central component of human intelligence 
which is fundamental and essential for human-human 
everyday communication. A basic function of language 

is to provide linguistic labels of objects and activities which 
people to refer to them in speech and share experiences in 
everyday communication[1]. Therefore, learning, 
understanding and using human languages by humanoid 
robot is critical for seamless human-robot interaction (HRI) 
[2-4].  
Language learning and human-robot interaction are viewed 
as two related but distinct topics in developmental robotics. 
Researchers in artificial intelligence and machine learning 
are interested in how to build computational algorithms to 
acquire human languages. Meanwhile, researchers in HRI 
most often focus on how to design and implement smooth 
human-robot interfaces built upon speech recognition and 
natural language processing algorithms [5]. Thus, one 
obvious direction to connect the two topics is that better 
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linguistic skills in robots lead to better interaction between 
humans and robots through more efficient verbal 
communication. The present paper investigates the link 
between learning and interaction in the other direction -- that 
is, better interaction can also lead to better language learning. 
More specifically, one effective way for robots to acquire 
human-like linguistic skills is to learn through social 
communication between a human language teacher and a 
robot language learner.  
This idea is inspired by comparing language learning in 
machines and in humans. In machine learning, a typical 
paradigm is to first collect training data, and then to focus on 
developing advanced algorithms to extract and infer 
knowledge from data. The application of such algorithms is 
most often done in batch mode [6]. Thus, a machine 
learner/algorithm passively receives information from a 
training dataset in a one-way flow, without interaction nor 
feedbacks from human users. This scenario is quite different 
with how a young child learns the native language from his 
caregivers in everyday social contexts. In such contexts, 
caregivers as language teachers dynamically adjust their 
behaviors based on their understanding of the learner’s 
mental state. Moreover, young language learners most often 
actively elicit information from teachers based on their own 
learning status. Good teachers then respond by providing 
“on-demand” information to young learners in real-time 
learning [7]. With responsive teachers, the learner plays an 
active role in leading learning-oriented interactions -- 
actively generating actions to interact with the physical 
environment and the teachers to seek data for successful 
learning. From this view, language learning should not be 
treated as the learner’s task or the teacher’s task. Instead, 
learning is a collaborative task in which both teachers and 
learners work together to achieve a shared goal [8].   
Recently, there has been an increasing attention on linking 
learning with interaction[9-13]. For example, in [14], 
humans alter their behavior towards a robotic social partner 
by decreasing their hand movement velocity in action 
demonstration. In the study, robots seem to be treated by 
humans as infants with limited cognitive capabilities, as 
people modify their tutoring behavior in a similar way as 
what they do in adult-child interaction. In another study [15], 
a robot’s real-time feedbacks shape the human tutor’s 
demonstration, based on which tutors adjust their movement 
parameters, such as pauses, speech and height of motion. In 
[16], a reinforcement process is developed and used to utilize 
contingent interaction between a human teacher and a robot 
learner to extract word forms through a few minutes of 
dialogue. In [17], a socially-guided robot can not only learn 
by itself but also flexibly take advantage of the guidance of a 
human teacher who produces scaffolding acts to facilitate 
learning. One shared focus in those studies has been to 
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incorporate user’s feedbacks into machine learning 
algorithms. The results convincingly demonstrated that such 
feedbacks lead to effective learning.  
In the present work, we argue that one compelling 
demonstration of the advantages of learning from social 
interaction is to show that given the same internal learning 
algorithm – without adding any new components to process 
additional feedbacks from the interaction – better social 
interaction lead to better learning. More specifically, a robot 
learner in our study generates different kinds of social 
behaviors when interacting with a human teacher, which 
change the teachers’ responsive behaviors in the ways that 
teachers provide better teaching signals. Hence, even with 
the same learning machinery, better training data generated 
through social interaction lead to better language learning.  

 
Figure 1. Overview of bi-directional human-robot interaction. We 
systematically manipulate the pathway indicated by dash lines to investigate 
how the dynamical coupling between human and robot can lead to successful 
statistical language learning.  
 

Our study focuses on teaching robots the meanings of words, 
in particular, object names. This is a fundamental topic in 
human language acquisition and also such lexical knowledge 
is less likely to be pre-acquired by robots because of the 
evolution of vocabulary and flexibility of pragmatics [18]. 
Figure 1 shows two pathways of human-robot interaction in a 
word learning task: 1) From human to robot (solid lines in 
Figure 1) – a human teacher generates various actions and 
cues to elicit the robot’s attention, and then names objects for 
the robot learner who receives visual and auditory 
information as training data for language learning; the task of 
the robot learner is to process information provided by the 
teacher to acquire language knowledge; 2) from robot to 
human (dash lines in Figure 1): the robot initiates actions 
based on its current learning state, producing spoken words 
and gazing at objects that it has already learned. Critically, 
the human teacher perceives the actions generated by the 
robot and adjusts his/her own teaching behavior accordingly. 
In this way, the behaviors from the teacher and the learner are 
closely coupled, forming a dynamic loop in the interaction.   
The present study systematically manipulates the pathway 
from robot to human (dash lines) and investigate how 
different responsive actions from the robot may change both 
the teacher’s behavior and the dynamics of human-robot 
interaction, which lead to different learning outcomes.  

II. REAL-TIME HUMAN-ROBOT INTERACTION AND LEARNING 

The experiment was a language-learning task in which a 
human teacher was asked to teach a robot a set of object 

names in a shared environment. To do so, he needed to 
engage the robot and attract the robot’s attention to the target 
object of his own interest, and then label the object for the 
robot learner. This joint task allowed participants and the 
robot to naturally interact with each other without any 
constraint on what they had to do or what they had to say. In 
order to teach the robot object names, human participants 
actively played the teacher’s role and generated multimodal 
behaviors to attract the robot’s attention, including eye 
contact, pointing to and manipulating objects in the shared 
environment, as well as speaking. Thus, the interaction itself 
was free-flowing, allowing participants to produce 
naturalistic behaviors. Each participant was asked to teach 16 
objects with novel names to the robot. Learning those 
object-name mappings through a brief interaction was a 
challenging task.  

 
Figure 2. A human teacher was teaching a robot learner a set of object names 
in the interaction.  

Figure 2 shows the experimental setup of our multimodal 
real-time human-robot interaction in which a human teacher 
attempted to teach a robot learner a set of object names. A 
Nao humanoid robot by Aldebaran Robotics was used in the 
experiment. The Nao robot has 35 DOFs as a whole. His eye 
unit is made of a CMOS camera with an image resolution of 
640*480 at a sample rate of 30 frames per second. The 
camera’s field of view is 58 degrees. In addition, stereo 
loudspeakers can be used to play back synthesized speech 
based on a text-to-speech module in the system. Since the 
Nao robot used here becomes a popular platform in various 
areas, the present study based on this particular robot 
platform can not only produce results to advance our general 
knowledge of building smooth human-robot interactions, but 
also have applied utilities for robot practitioners and 
educators using Nao to build real-world applications.   

We’ve developed a learning component in the robot through 
which it was able to process visual and auditory signals in 
real time. Using this system, we then systematically 
manipulated the ways that the robot reacted to the human’s 
behaviors based on the robot’s own learning state. In the 
following, we will overview the learning system first and 
then present the experiment and results.  

A. Perception and Learning in Robot 

As shown in Figure 3, there are three components in the 
robot’s learning system: visual processing, language 
processing and word-referent mapping. In the following, we 
will describe each of the three components respectively.  



 
 

 

Figure 3. The system of statistical word learning consists of three 
subsystems: visual processing, language processing and 
visual-speech integration.  
 
Visual Processing 
We covered the interaction environment with white fabrics 
and chose objects with unique colors which facilitated visual 
processing. Given raw images collected from the robot’s 
camera on the robot’s head, the first step in image processing 
separates white background pixels from object pixels. In the 
second step, adjacent nonwhite pixels that have similar color 
values within a small threshold are grouped into several 
blobs. The method then attempts to create larger groups from 
the initial grouping by using a much tighter threshold. This 
follow-up step determines which areas of an image belong to 
the same object even if an object is visually segregated into 
multiple segments as for example when held in a teacher’s 
hand. The third step assigns each blob into an object 
category. In this object detection task, we use Gaussian 
mixture models to pre-train a model for each object. By 
applying each object model to a segmented image, a 
probabilistic map is generated for each object indicating the 
likelihood of each pixel in an image as belonging to this 
specific object. Next, by putting probabilistic maps of all the 
possible objects together, and by considering the spatial 
coherence of an object, the detection algorithm assigns an 
object label for each blob in the segmented image. More 
technical details can be found in [19]. The whole object 
detection step on the robot’s side took a running time of less 
than 100ms for each image to provide visual object 
candidates for language learning.  
Language Processing 
Figure 4 provides an overview of language processing. The 
robot perceived human speech in real time. A speech 
recognition software (Dragon naturally speaking from 

nuance, LLC) was first applied to convert speech into text. 
Next, a 10-second temporal window was used to define a 
local context. Spoken utterances within a context were then 
compared to spot frequent words that were further processed 
in two specific ways. First, frequent words were selected as 
candidate words for object names and would be linked with 
visual input to compute word-object associations. Second, 
frequent words were added to a word list that the robot 
maintained to keep track of those words that the robot heard 
before. In speech production, the robot would selectively 
produce those words. In a way, this mechanism made the 
robot like a copycat – repeating what it just heard most 
frequently in the recent past. For example, if a human teacher 
happened to say “hello” to the robot in multiple times, the 
robot would say “hello” back to the human teacher. Thus, the 
robot learning system was transparent and straightforward -- 
purely driven by statistical regularities in the data without 
complicated inference. The goal was to show how better data 
from interaction may lead to better statistical learning.   

Figure 4. Overview of language processing. A word list is extracted and 
maintained in the robot’s memory. Those words are both candidates for 
object names and also candidates for robot speech production.  
 

Statistical word-referent mapping 
Given word candidates and visual objects in view, 
associating referents (objects, etc.) with words (object 
names, etc.) is viewed as the problem of identifying 
correspondences between the two. With multiple learning 
situations as shown in Figure 5, there are multiple possible 
pairs between words and objects wherein some are correct 
and others are not. The learning system computes association 
probabilities of all the possible pairs simultaneously and 
attempts to discover a set of reliable word-referent pairings 
across words, across objects, and across multiple situations. 
More specifically, the learning system estimates the 
association probability of every co-occurring word-referent 
pair in every learning moment. In this way, a word-referent 
association matrix shown in Figure 5 is built in which the 
rows represent all the referents in the training data, and the 
columns represent all the words in the word list. Each cell 
indicates the association probability of a specific 
word-referent pair. If a word-referent pair never co-occurs in 



 
 

 

any moment, the association probability is set to zero. 
Otherwise, each pair is considered to be a possible lexical 
item and its association probability is calculated. Using 
machine translation techniques, the learning method searches 
for an overall optimal solution of those individual association 
probabilities as a whole across all of the learning situations, 
but not just individual pairings. As a result, some 
word-referent associations (cells in the association matrix, 
etc.) with high probability can be viewed as learned pairs. 
Technical details can be found in [20]. 

Figure 5. Overview of statistical word learning. The learning system takes 
multiple pairs of words and objects, one from each learning moment, and 
computes an association matrix containing all the possible associations 
between words and objects. Some cells in the matrix are assigned with high 
probability, which can be treated as learned word-object pairs.  

B. Looking and Talking Acts from Robot 

Through three components described above, the robot 
learner was able to process visual and audio data to spot 
frequent words and then build the associations between 
words and object names. This could be done in a completely 
passive way without any actions from the robot learner. The 
new contribution of the study was to link robot word learning 
with robot behavior. In particular, different from a passive 
learner, the active robot generated looking and speaking 
behaviors based on what it has learned.   
As described earlier, the robot maintained a word list 
containing frequent words that the robot has heard multiple 
times in the recent interaction. When the robot heard one of 
those words from the human’s current speech, the robot 
would recall that word as a familiar word heard previously 
and repeat it as a response to human speech. Moreover, those 
words in the candidate list were also considered to be 
associated with a particular object.  When the robot decided 
to produce a word, it searched the association matrix shown 
in Figure 5 to check whether this familiar word was strongly 
associated to an object. If so, the robot would switch his 
attention toward that object while producing its name. This 
looking-while-talking behavior was naturally perceived and 
interpreted by human teachers as the robot understood the 
meaning of that spoken word.  
The above control strategy created four possible responses 
when hearing a new utterance from the human teacher in the 

real-time interaction: 1) no talking or looking initialized by 
the robot: when the current spoken utterance by a human 
teacher didn’t contain any words that the robot already knew, 
the robot would not produce any spoken word nor generate 
any gaze switches; 2) talking without looking: the robot 
spotted a familiar word from human speech, and therefore the 
robot repeated that word; however, that word was not 
strongly associated with any object, therefore no attention 
switch was made; 3) talking and looking at the target object: 
the robot produced a word and looked at the target object 
because the robot found a strong association between the two 
in its word-referent association matrix; and 4) talking and 
looking at a wrong target: the robot looked at a wrong target 
while producing a word; In this case, the target that the robot 
treated as the referent of the word was incorrect. Here is an 
example conversation between a human teacher and a robot 
learner:  
Human: the blue object is a violin 
Robot:  --- 
Human: violin (showing the violin)  
Robot:  --- 
Human: can you say violin (showing the violin)  
Robot:  --- 
Human: violin (slowly) 
Robot: violin 
Human: yes, violin 
Robot: violin  (looking at the violin)  
Human: yes, good job 
Robot: good job 
Human: good job (with laugh) 
…… 
This example shows that the overall interaction was smooth 
through which the robot gradually picked up lexical 
information based on statistical information provided by the 
human teacher. 
To summarize, we equipped the robot learner with basic 
perception, learning and action skills. In the experiment 
described next, we systematically manipulated the robot’s 
actions based on its learning states, and measured how this 
might change teaching behaviors from human teachers, and 
therefore learning outcomes in robot. 

III. EXPERIMENT 

There were three experimental conditions in which the robot 
attempted to learn new words and the meanings of the words 
from a human teacher. The differences between the three 
conditions lied in what trigged the robot’s looking and 
talking actions in the interaction:  
- Passive: the robot didn’t generate any speech or attention 

switches among visual objects. Instead, it just passively 
perceived information while the teacher attempted to teach 
the robot object names. This condition served as a baseline 
to measure the results from passive statistical learning 
alone.  

- Moderately active: the robot generated spoken words and 
also looked at the target object associated with spoken 



 
 

 

words. However, it did so only after the robot has 
accumulated enough knowledge of words and referents. 
Therefore, the robot learner in this condition would not 
talk until after accumulating lots of statistical information 
about words and objects. And when it started talking, it 
was likely to say meaningful and relevant words, and also 
looked at the correct target objects. In this version, the 
robot didn’t generate lots of activities at the beginning of 
the interaction (no talking nor looking) but started to be 
much more active at the end (talking while looking at the 
correct targets). This moderately active robot can be 
viewed as a rational and cautious learner – not saying 
much but always saying it right.  

- Highly active: the robot tended to generate speech and 
look at objects very often, even from the beginning 
wherein it might not have enough statistical data to extract 
meaningful words and objects. Therefore, the robot learner 
might produce words that were less meaningful and 
irrelevant to the learning task (e.g. “there”, “look”) by 
simply repeating what the human teacher just said without 
context. Hence, there were lots of talking without looking, 
and talking while looking at wrong objects. However, with 
more statistical evidence accumulated, the robot would 
gradually produce more appropriate words and looks. 
Through the whole interaction, the robot was talkative and 
also actively switched to look at candidate objects. A 
highly active robot could be viewed as a young child who 
is active with high energy but can be “annoying” 
sometimes as what it says may or may not make sense.  
Nonetheless, just as a young human learner, the highly 
active robot was not afraid to produce many talking and 
looking behaviors.  

Two primary questions in the present study are: 1) how 
different behaviors from the robot may alter what human 
teachers behave in language teaching; and 2) how this may 
ultimately lead to different learning results in robot. Using 
the passive condition as a baseline, our main interest is to 
compare how different degrees of activity from the robot 
learner may influence interaction and learning. One 
hypothesis is that human teachers may like both moderately 
and highly active robots more than the passive one as 
activities and responses from the robot are critical 
components in social interaction to create coordinated 
behaviors between the two social partners. In addition, 
participants may like the moderately active robot most as it is 
calm and rational. In contrast, more inappropriate looking 
and talking from the highly active robot may be viewed as 
“annoying” and therefore disrupt interaction. Alternatively, 
more looks and more speech may better engage human 
teachers. Just like how young children interact with their 
parents to learn their native language, it is beneficial for a 
robot learner to generate more acts, even with immature 
behaviors such as producing non-sense words or looking at 
random targets.  
 
21 students at Indiana University participated in the study.  
They were divided into three experimental conditions with 7 
participants in each condition.  Participants were given four 

sets of four novel objects, with a total of 16 objects.  More 
specifically, each set contained one blue, one green, one red 
and one pink object. Each object was given a name that 
roughly matched with the overall shape of the object, i.e. 
pipe, comb, or violin. Participants were provided with those 
object names and asked to memorize them in advance before 
they entered the experiment. Each participant was asked to 
teach the robot in four trials with each trial lasting around 2 
minutes. Trial orders were randomized across participants. 
At the end of each trial, an experimenter signaled participants 
to stop and asked participants to take a voluntary break 
before starting a new trial with a new set of four objects. The 
whole interaction was free flowing without any particular 
instructions to participants on what they should do and what 
they should say to the robot.  

IV. RESULTS 

With the learning system run in real time, including online 
image processing and online language processing, we 
collected multimodal data during the interaction, which 
consisted of: 1) human speech; 2) robot speech; 3) visual 
information from the robot’s view and 4) word learning 
results.  Our data analyses focused on two perspectives in the 
interaction: 1) teaching: how human teachers might behave 
differently; and 2) learning: how robot learners in the three 
conditions might vary in their learning performance.  

A. Teaching Behavior from Human 

In this section, we first report linguistic acts from human 
teachers followed by the results derived from non-linguistic 
acts.  
1) Speech Act 
A summary of a set of measures is presented in Table I. 
Overall, in terms of the proportion of talking time (in the 2nd 
row of the table), human teachers tended to talk to the robot 
learner more when the robot learner was more active. This 
result may seem to be not intuitive as we know turn-taking is 
a reliable pattern in speech conversation, including in 
human-robot interaction. If human teachers would not talk 
when the robot was talking, then more talking from the robot 
should lead to more listening and less talking from human 
teachers. However, we noticed that participants spent only 
21% of time talking to the robot in the passive condition, 
with 18.75 spoken utterances per minute. There were long 
silences in which participants were not much engaged in 
teaching the robot. Without any responses from the robot, 
participants in the passive condition might just hesitate to 
take next actions. Instead, they probably anticipated some 
responsive behaviors from the robot before they proceeded.  
When the robot became more active with talking and looking 
acts, even with the turn-taking principle that both social 
partners intended to follow, those behaviors from the robot 
broke the ice as participants produced 34.63 spoken 
utterances per minute which is almost doubled compared 
with the number in the passive condition. As shown in Table 
I, we found no difference in speech length across the three 
conditions. The significant difference in talking time was 



 
 

 

mostly caused by the number of spoken utterances produced. 
Not only did participants generate more spoken utterances in 
the highly active condition, they also produced more naming 
utterances (14.25) compared with what they did in the 
moderately active (9.03) and passive (7.65) conditions. 
Meanwhile, mean length of naming utterance (Mhighly=0.53; 
Mmoderately=0.52; Mpassive=0.50) was similar in the three 
conditions. In addition, we measured the number of unique 
words (tokens, etc.) and found a significant difference 
between the three conditions shown in the last row of Table I. 
Thus, participants not only produced more words, but also 
used different kinds of words in the highly active condition 
as the size of vocabulary increased from 103 to 142.  Using 
different words and naming objects in different ways may 
facilitate learning as we will show next.  
 
Table I: A summary of human speech. Means, standard deviations (in 
parentheses) and statistical results are reported. “n.s” stands for not 
(statistically) significant  

 Highly 
active 

Moderately 
active  

passive statistics 

Prop of 
talking 
time 

36.12% 
(8.28%) 

0.26.82% 
(7.82%) 

21.36% 
(6.24%) 

F(2,18) 
=8.22;  
P<0.001 

Freq. of 
spoken 
utterances 

34.63 
(7.28) 

25.57 
(6.25) 

18.75  
(5.78) 

F(2,18) 
= 9.74;  
P<0.001 

length of 
spoken 
utterance  

0.63 
(0.23) 

0.61  
(0.18) 

0.64 
(0.35) 

n.s.  

Freq. of 
naming  

14.25 
(2.52) 

9.03  
(2.01) 

7.65 
(1.56) 

F(2,18) 
= 7.48; 
p<0.005 

length of 
naming 
(sec) 

0.53 
(0.28) 

0.52  
(0.22) 

0.50 
(0.25) 

n.s.  

vocabulary 
size 

142 
(24) 

110  
(32) 

103 
(25) 

F(2,18) 
= 3.65 
P<0.05 

 
2) Non-Linguistic Behavior 
Now that we know more naming utterances were created by 
participants in the highly active condition compared with the 
other two conditions.  We next zoomed into those naming 
moments to further evaluate the quality of teaching signals 
from human teachers. We measured the size of a named 
object at naming moments when a human teacher produced a 
spoken utterance containing an object name. As shown in 
Figure 6, a comparison between the three conditions suggests 
that the target object was larger and more dominant in the 
highly active condition compared with the other two 
conditions (tmoderately(13)=3.24,p<0.01; tpassive(13) =4.11 , 
p<0.005). On average, across all the moments in the 
interaction, a visual object occupied 2.12% of the robot’s 
view. Therefore, in both active conditions, the target object 
was larger than other objects in view (thighly(13) =5.80 , 
p<0.001; tmoderately(13)=2.64,p<0.01) while the target object 
was not significantly different with other objects in the 
passive condition(tpassive(13) =0.59, p=0.28). Human teachers 
in the highly active condition not only produced more 

naming events; they were also selective for when to name an 
object. The naming moments chosen were those that the 
target object was dominant the robot learner’s view. A 
central challenge in word learning is reference uncertainty – 
given a learning moment with several words and several 
objects, there are many possible associations between 
candidate words and candidate objects. However, if the 
human teacher labels an object when that object is visually 
salient, this teaching behavior can significantly reduce the 
uncertainty problem in word-to-object mapping [21]. In the 
present experiment, we show that human teachers in the 
highly active condition tended to do so, which provided an 
external solution of the uncertainty problem through 
teacher-learner interactions.  

Figure 6.The mean size of target objects at naming moments across three 
experimental conditions.  

B. Learning outcome in robot 

Different behaviors from the robot led to different teaching 
behaviors from human teachers. Our conjecture is that 
human teachers interacting with more active robots provided 
better teaching signals. To confirm this hypothesis, the next 
step is to measure whether and how the learning system may 
take advantage of better training data provided by the 
teacher.  
In the experiment, the robot has discovered and maintained a 
set of familiar words and stored them in a word list. Only a 
word produced in human speech frequently and repeatedly 
was chosen to be a familiar word. Then the robot linked those 
familiar words with objects through building associations 
between words and objects. Since our learning system was 
run in real-time interaction, we can directly access the 
learning outcome at the end of the interaction.  
To measure word learning results, we found 16 object names 
in the association matrix accumulated in the interaction (as 
shown in Figure 5) and computed the mean association 
strength of those target words. As shown in Figure 7, target 
word-referent pairs have much higher association 
probabilities in the highly active condition compared with the 
other two conditions (tmoderately(13)=3.92,p<0.005; tpassive(13) 
=4.28, p<0.001), showing that the highly active robot has 
successfully learned those word-object pairs.  



 
 

 

 
Figure 7. Association probabilities between spoken object names and target 
objects in three experimental conditions. 
 
In addition to access the association matrix as an internal 
representation of word learning, learning results can also be 
evaluated through the robot’s external behavior. Producing 
an object name while looking at the target object was a clear 
demonstration that the robot learner knew the referent of the 
word, because the robot learner did so only after it built a 
strong association between an object and its linguistic label. 
In the two active conditions, the robot produced spoken 
words from its word list as a way to demonstrate its 
knowledge to those words. Given that the highly active robot 
in general produced more words than the moderately active 
one as a part of our experimental design, we measured 
instead the relative proportion of object names produced, 
normalized by the overall number of spoken words. The 
highly active robot produced not only more words overall but 
a larger proportion of spoken words were object names 
(M=42.83%), compared with the moderately active robot 
(M=27.21%, t(13)=2.87,p<0.01), suggesting more 
successful learning from the highly active robot.  

V. GENERAL DISCUSSION 

In the present study, we argue that one of the strongest 
demonstrations of linking interaction and learning is to show 
that even given the same learning algorithm – without any 
changes to process additional feedbacks from human users, 
the learning system can improve its performance through 
social interaction. That is, social behaviors from a robot 
learner make a human teacher provide better and more 
teaching signals, and by doing so, better and more training 
data through social interaction lead to better statistical 
learning. The results can be explained from both cognitive 
and social perspectives. At the cognitive level, on-demnad 
information provided by human teachers can directly enter 
the learning system to improve learning. At the social level, 
more activities from the robot engage human teachers to 
more actively interact with the robot. In the following, we 
will discuss those two aspects respectively.  
First, how exactly did better data lead to better learning with 
the same learning mechanism across the three conditions? A 
close examination can categorize the robot’s looking and 
talking behaviors into two common cases. First, at the 
beginning of interaction, the highly active robot started 
talking without accumulating enough statistical information 
yet. Therefore, the robot was likely to produce seemingly 

non-sense words and also generate more-or-less random 
looks on objects. This kind of behavior provided clear signals 
for human teachers on what the robot did or didn’t know –its 
internal learning states. If the robot looked at object A while 
naming it as object B, or looked at object A while producing 
an irrelevant word (e.g. function words), then the human 
teacher was likely to correct that by showing the right object 
to the robot and naming it. The learning system can then use 
such clear information to update its knowledge. This can be 
viewed as a case of learning from making mistakes with three 
consequential steps: 1) the robot named a wrong object; 2) 
the human teacher noticed that and corrected it; and 3) the 
robot’s learning system took correct statistical data and 
updated its lexical knowledge.  Different from 
self-correction, in the context of human-robot interaction, it 
relied on human teachers to correct those mistakes by 
providing correct signals through interaction. In the second 
case, when the robot happened to name an object correctly 
while switching attention on the target object, the human 
teacher was likely to echo that and encourage the robot 
learner to do so. Thus, both correct and incorrect behaviors 
from the robot can elicit useful feedbacks from human 
teachers. This is accomplished without adding any 
components in the learning system to explicitly use feedback 
signals. Instead, this solution worked well because it counted 
on better statistics provided by the teacher; and moreover, 
such statistical information was provided as needed and as 
soon as possible in real-time learning. As shown in Figure 1, 
we can view this as active learning through interaction [22], 
in which the robot learner generated behaviors to reveal its 
current learning states, and those behaviors gave human 
teachers first-hand information about what the robot learner 
needed next for successful learning. In summary, real-time 
learning using on-demand information elicited through 
human-robot interaction can lead to successful statistical 
learning without complicated internal algorithms.  

Second, why were human teachers willing to provide what 
the robot needed in the interaction? More generally, how can 
a robot learner successfully elicit better teaching signals from 
human teachers? In the case of human language learning, 
when communicating with young children, parents tend to 
speak slowly, with high pitch and hyperarticulation. They 
also tend to use repeated and simple words [23]. As a result, 
child-directed speech certainly provides better signals for 
language learning compared with overheard speech from 
adult conversation or TV programs. In the context of training 
robots to learn a language or other cognitive skills, if a robot 
learner, through its appearance and its behavior, makes 
human teachers treat the robot as an immature learner, human 
teachers would be willing to adjust their behaviors to interact 
with and teach the robot. In the present study, it is unexpected 
that human teachers were not distracted by non-sense words 
and random looks generated by the highly active robot. 
Instead, those immature behaviors somehow engaged and 
motivated human teachers to provide better teaching signals, 
suggesting that in the context of learning, immature 
behaviors demonstrated by the learner may facilitate learning 



 
 

 

through teacher-learner interactions. More interaction means 
more data for learning; and better interaction means better 
data. Of course, this idea may not work in general 
human-robot interaction in which we want to design robots to 
be co-workers and assistants. However, there are many 
applications in which robots cannot be equipped with all the 
knowledge and skills in advance. Instead, it needs to learn 
from interacting with human users. Hence, it is an important 
topic to understand how to make such learning possible and 
effective. Toward this goal, instead of focusing on how to 
develop complicated machine learning algorithms that are 
able to infer knowledge from noisy data, we should also think 
of how to design better human-robot interactions and 
interfaces through which robot learners can elicit and gather 
better teaching signals from human teachers. It is not 
surprising that better data lead to better learning. But the 
important lesson here is to emphasize on how to elicit better 
teaching signals from human users, which can be an 
important direction of robot learning in social contexts. 

We note that the present findings are derived from one 
word-learning task with a specific experimental setup. The 
goal is to make a convincing and clear case to demonstrate 
important connections between interaction and learning. For 
that purpose, we intentionally designed and implemented the 
same learning machinery across multiple experimental 
conditions, and showed that better learning can be achieved 
through better interaction. Of course, learning algorithms 
that can better capture social signals in the interaction will 
lead to even better learning [24]. In the present work, we are 
less interested in obtaining the best learning results using the 
best algorithms available. Instead, we are more interested in 
proposing and understanding fundamental principles and 
ideas of linking interaction with learning, such as active 
real-time learning, and elicitation of humans’ teaching 
signals for learning. Those principles have the potential to 
apply to different applications and learning tasks. More 
generally, we suggest that a deep theoretical understanding 
of how a robot can learn to interact, and interact to learn, 
what principles such learning system should have, and how 
incorporate such principles in different contexts and different 
tasks, will provide useful guides for future HRI design.  
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